

Novel metal organic framework adsorbents for efficient storage of hydrogen

Project Overview

Theodore Steriotis National Center for Scientific Research 'Demokritos'

Athens, Greece

November 9, 2023

HORIZON-CL4-2021-RESILIENCE-01-17: Advanced materials for hydrogen storage

Grant Agreement No: 101058547

- □ MOST-H₂ stands for "Novel metal organic framework adsorbents for efficient storage of hydrogen"
- Research and Innovation Action
- □ Project budget: 4.9 M€
- □ Project duration: 48 months (June 2022 May 2026)
- Consortium consists of 16 partners from 8 countries: Greece, Germany, Spain, the UK, Austria, France, Italy, Morocco
- □ Project coordination: National Center for Scientific Research "Demokritos", Greece

https://most-h2.eu/

The MOST-H2 consortium

UNIVERSITIES

- University of Crete Greece
- Le Mans Université France
- Friedrich-Alexander-Universität Erlangen-Nürnberg Germany
- Universidad de Alicante Spain
- Université Mohammed VI Polytechnique Morocco
- University of Cambridge UK

HI UCAM IMM UM UM FISUR IVA IVA IVA IVA IVA IVA

 Research Centers NCSR Demokritos - Greece Max Planck Institute for Intelligent Systems - Germany 	 Private sector Laguens y Perez S. L Spain Lapesa Grupo Empresarial S. L Spain
	 FEN Research GmbH - Austria Italferr S.p.A Italy GreenDelta GmbH – Germany Steinbeis 2i GmbH – Germany Immaterial Ltd - UK Hiden Isochema Ltd - UK
Image: Non-the section of the secti	Warder-Universitat d'Alacant MAX PLANCK INSTITUTE OF Creenceurs Steinbeis Europa Zentrum Filipping

Design computationally, synthesize and experimentally validate new nanoporous adsorbents for solid state hydrogen storage

Development of new Metal Organic Frameworks with usable H₂ storage capacities of at least 10 wt% and 50 g/L below 100 bar

Develop a cryo-adsorption H₂ storage system delivering up to 500 g of H₂ / testing in a relevant environment

MOST- (H)2

MOFs vs other nanoporous adsorbents

Porous carbons

■BET areas <4000 m²/g → H₂ storage capacity < 7-8 wt% at material level (rarely > 6 wt%)

 Produced by pyrolysis of amorphous precursors (coals, agricultural by-products, etc.) → highly disordered pore structure and surface chemistry → difficult to accurately tailor pore size/shape to optimise H₂ adsorption

 Ordered structures are very costly due to complex synthesis

Silicas, zeolites, CNTs

- Cheap and robust but low BET areas (< 1000 m²/g)
- Carbon nanostructures

 (nanotubes, graphene) or 2d
 materials have not shown
 adequate H₂ storage performance
 poor reproducibility of results

Metal Organic Frameworks

- BET areas >5000 m²/g
- •H₂ adsorption capacities > 10 wt%
- Can be rationally designed following reticular chemistry rules (carefully selected building blocks can provide molecularly engineered pore networks)

MOST-H₂ approach

Challenge 1: How to choose the best structure

MOF structural-chemical variations

Funded by

✓ Adsorption isotherms

Pressure (bar)

Challenge 2: Maximize H₂ **deliverable** capacity

✓ Uptake @ 100 bar - Uptake @ 5 bar

✓ @ 77K (liquid N₂)

Challenges 1, 2 → ML screening MOST-H2 database

Challenges 1, 2 → Real Samples

Challenge 3: Shape engineering → powder vs monolith

Challenge 4: Tank packing/Heat management

 $V_{MOF} / V_{tank} = 0.99$

 $V_{MOF} / V_{tank} < 0.65,$

 $S \downarrow \downarrow, D \downarrow \downarrow, \lambda \downarrow$ $S \uparrow \uparrow$

 $S \uparrow \uparrow, D \uparrow \uparrow, \lambda \downarrow \downarrow$

Challenge 4: Tank design/modelling

Concentration

Funded by the European Union

Technology validation/assessment

Tank testing

Hydrogen Refuelling Station for small vehicles installed at the premises of NCSR DEMOKRITOS

GreenDeLTa

Performance data

Full Life Cycle Sustainability Assessment of the new adsorbents

fen research

Techno-Economic Analysis of using MOF-based H₂ storage systems in stationary & rail / road applications

Thank you!

https://www.linkedin.com/company/most-h2/

https://twitter.com/H2Most

Funded by the European Union